Common Integration Formulas Dataset

Key Takeaways

  • Access 56 essential integration formulas for calculus.
  • Explore categories like basic, trigonometric, and exponential functions.
  • Download ready-to-use formulas with conditions and notes.
  • Leverage accurate integral definitions for educational or professional use.
Showing 56 of 56
Category Function f(x) ∫f(x)dx Condition Notes
Basickkx + Ck is constantConstant rule
Basicx^nx^(n+1)/(n+1) + Cn ≠ -1Power rule
Basic1/xln|x| + Cx ≠ 0Natural logarithm
Basice^xe^x + C-Exponential function
Basica^xa^x/ln(a) + Ca > 0, a ≠ 1General exponential
Basicx^(-1/2)2√x + Cx > 0Square root form
Trigonometricsin(x)-cos(x) + C-Sine function
Trigonometriccos(x)sin(x) + C-Cosine function
Trigonometrictan(x)-ln|cos(x)| + Cx ≠ π/2 + nπTangent function
Trigonometriccot(x)ln|sin(x)| + Cx ≠ nπCotangent function
Trigonometricsec(x)ln|sec(x) + tan(x)| + Cx ≠ π/2 + nπSecant function
Trigonometriccsc(x)ln|csc(x) - cot(x)| + Cx ≠ nπCosecant function
Trigonometricsec²(x)tan(x) + Cx ≠ π/2 + nπSecant squared
Trigonometriccsc²(x)-cot(x) + Cx ≠ nπCosecant squared
Trigonometricsec(x)tan(x)sec(x) + Cx ≠ π/2 + nπProduct form
Trigonometriccsc(x)cot(x)-csc(x) + Cx ≠ nπProduct form
Trigonometricsin²(x)x/2 - sin(2x)/4 + C-Half-angle identity
Trigonometriccos²(x)x/2 + sin(2x)/4 + C-Half-angle identity
Inverse Trig1/√(1-x²)arcsin(x) + C|x| < 1Arcsine form
Inverse Trig-1/√(1-x²)arccos(x) + C|x| < 1Arccosine form
Inverse Trig1/(1+x²)arctan(x) + C-Arctangent form
Inverse Trig-1/(1+x²)arccot(x) + C-Arccotangent form
Inverse Trig1/(|x|√(x²-1))arcsec(x) + C|x| > 1Arcsecant form
Inverse Trig-1/(|x|√(x²-1))arccsc(x) + C|x| > 1Arccosecant form
Inverse Trig1/√(a²-x²)arcsin(x/a) + C|x| < aGeneral arcsine
Inverse Trig1/(a²+x²)(1/a)arctan(x/a) + Ca ≠ 0General arctangent
Hyperbolicsinh(x)cosh(x) + C-Hyperbolic sine
Hyperboliccosh(x)sinh(x) + C-Hyperbolic cosine
Hyperbolictanh(x)ln(cosh(x)) + C-Hyperbolic tangent
Hyperboliccoth(x)ln|sinh(x)| + Cx ≠ 0Hyperbolic cotangent
Hyperbolicsech(x)arctan(sinh(x)) + C-Hyperbolic secant
Hyperboliccsch(x)ln|tanh(x/2)| + Cx ≠ 0Hyperbolic cosecant
Hyperbolicsech²(x)tanh(x) + C-Hyperbolic secant squared
Hyperboliccsch²(x)-coth(x) + Cx ≠ 0Hyperbolic cosecant squared
Logarithmicln(x)x·ln(x) - x + Cx > 0Integration by parts
Logarithmiclog_a(x)x·log_a(x) - x/ln(a) + Cx > 0, a > 0General logarithm
Logarithmic1/(x·ln(x))ln|ln(x)| + Cx > 1Nested logarithm
Rational1/(x²-a²)(1/2a)ln|(x-a)/(x+a)| + Cx ≠ ±aPartial fractions
Rational1/(a²-x²)(1/2a)ln|(a+x)/(a-x)| + C|x| < aPartial fractions
Rational1/√(x²+a²)ln|x + √(x²+a²)| + C-Hyperbolic substitution
Rational1/√(x²-a²)ln|x + √(x²-a²)| + C|x| > aHyperbolic substitution
Rational1/√(a²-x²)arcsin(x/a) + C|x| < aTrigonometric substitution
Rational√(a²-x²)(x/2)√(a²-x²) + (a²/2)arcsin(x/a) + C|x| ≤ aTrigonometric substitution
Rational√(x²+a²)(x/2)√(x²+a²) + (a²/2)ln|x+√(x²+a²)| + C-Hyperbolic substitution
Rational√(x²-a²)(x/2)√(x²-a²) - (a²/2)ln|x+√(x²-a²)| + C|x| > aHyperbolic substitution
Speciale^(ax)sin(bx)e^(ax)(a·sin(bx)-b·cos(bx))/(a²+b²) + C-Integration by parts twice
Speciale^(ax)cos(bx)e^(ax)(a·cos(bx)+b·sin(bx))/(a²+b²) + C-Integration by parts twice
Specialx·e^xe^x(x-1) + C-Integration by parts
Specialx·sin(x)sin(x) - x·cos(x) + C-Integration by parts
Specialx·cos(x)cos(x) + x·sin(x) + C-Integration by parts
Specialx²·e^xe^x(x²-2x+2) + C-Integration by parts twice
Specialx·ln(x)(x²/2)ln(x) - x²/4 + Cx > 0Integration by parts
Definite∫₀^∞ e^(-x²) dx√π/2-Gaussian integral
Definite∫₀^∞ x^n·e^(-x) dxn! (Gamma function)n ≥ 0 integerGamma function relation
Definite∫₀^π sin^n(x) dxWallis formulan ≥ 0 integerReduction formula
Definite∫₀^(π/2) sin^n(x)cos^m(x) dxBeta functionn,m > -1Beta function relation

Use Cases

  • Import the CSV file into your Python script or SQL database to build custom calculus solvers or educational tools.
  • Use the Excel file to filter formulas by category, create study guides, or verify calculations for complex problems.
  • Print the PDF version for a quick reference guide in classrooms, during exams, or for offline study sessions.
  • Integrate this dataset into e-learning platforms to provide a structured resource for students learning integral calculus.